Past and current research contributions

Leila De Floriani
University of Maryland,
College Park, MD
deflo@umiacs.umd.edu

Overview

- Past contributions to shape representation, processing and analysis
 - Feature-based modeling and analysis
 - Multi-resolution geometric modeling
 - Non-manifold geometric modeling
- Current research and challenges in topological data analysis
 - Homology-based descriptors for shape understanding
 - Topology-based visualization for interactive analysis
 - Scalability to big, multi-dimensional data

Feature-based Modeling and Analysis

Shape representation and analysis

- ❖ Feature-based boundary representation of solid objects [ACM SIGGRAPH, 1985; ACM TOG, 1988]
 - object decomposition into form features
 - graph-based representation
- **❖ Form feature detection and understanding**[ACM SoCG, 1987; IEEE PAMI, 1989]
 - graph-based approach
 - detection based on the analysis of the graph kconnected components
- Application to product design, analysis and manufacturing

Multi-resolution Geometric Modeling

Shape representation and processing

- Hierarchical mesh-based representations for terrains, 3D surfaces, 3D scalar fields
 - geospatial data processing, computer graphics, scientific data visualization
 - emphasis on geometry processing
- Terrain and surface modeling
 - Delaunay Pyramid [CG&A, 1989]
 - Hierarchical TIN (Triangulated Irregular Network) [ACM TOG, 1995]
 - Multi-Tessellation (MT) [IEEE VIS, 1998]
 - Sparse Terrain Pyramid [ACM SIGSPATIAL, 2008]
- 3D scalar field modeling
 - Multi-resolution unstructured volume meshes [IEEE TVCG, 2004]
 - Diamond-based tetrahedral hierarchies [IEEE TVCG, 2009 and 2010]

Copyright © Leila De Floriani 2017

Non-manifold Geometric Modeling

Shape representation and analysis

- ❖ Decomposition of non-manifold objects into nearly manifold components [SMA 2003; GM, 2003; CAD 2011]
 - dimension-independent and unique
 - applications:
 - decomposition-based data structures
 - reasoning on non-manifold shapes
- Compact mesh-based representations for non-manifold objects
 - connectivity-based and spatial data structures [SGP, 2003; CAD, 2004; ACM SIGSPATIAL, 2011; CGF, 2013]
 - data structures for arbitrary dimensional simplicial complexes [SGP, 2004; C&G, 2011]

Topological Data Analysis

From graph-based to topology-based shape analysis

A collection of combinatorial tools rooted in algebraic topology

- study the homology of a shape through a scalar function defined on it
- Compact and robust topological descriptors based on smooth and discrete Morse theory
 - Morse-Smale complexes, Reeb graphs, homology generators, barcodes, persistent diagrams, etc.

- comparing persistent diagrams
- computing optimal persistent homology generators

Topology-based visual analytics

- segmentations through Morse-Smale complexes
- tracking level sets evolution through Reeb graphs Copyright © Leila De Floriani 2017

Topological Data Analysis

Challenges

- Scalability of existing approaches to big, multidimensional and dynamic data
 - new data structures and algorithms rooted in computation topology suitable for parallel or distributed implementation
- Statistical topological data analysis: learning using topological features
 - discriminative for learning models, agnostic and parameter-free
- Dealing with multivariate data: data equipped with multiple scalar functions
 - multi-persistent homology for shape recognition
 - visual analysis through Pareto sets, Jacobi sets, Reeb spaces, critical clusters

